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Abstract
Reference intervals are relied upon by clinicians when interpreting their patients’ test results. Therefore, laboratorians directly 
contribute to patient care when they report accurate reference intervals. The traditional approach to establishing reference intervals 
is to perform a study on healthy volunteers. However, the practical aspects of the staff time and cost required to perform these 
studies make this approach difficult for clinical laboratories to routinely use. Indirect methods for deriving reference intervals, 
which utilise patient results stored in the laboratory’s database, provide an alternative approach that is quick and inexpensive 
to perform. Additionally, because large amounts of patient data can be used, the approach can provide more detailed reference 
interval information when multiple partitions are required, such as with different age-groups.

However, if the indirect approach is to be used to derive accurate reference intervals, several considerations need to be addressed. 
The laboratorian must assess whether the assay and patient population were stable over the study period, whether data ‘clean-up’ 
steps should be used prior to data analysis and, often, how the distribution of values from healthy individuals should be modelled. 
The assumptions and potential pitfalls of the particular indirect technique chosen for data analysis also need to be considered. A 
comprehensive understanding of all aspects of the indirect approach to establishing reference intervals allows the laboratorian 
to harness the power of the data stored in their laboratory database and ensure the reference intervals they report are accurate.

Introduction
The reference intervals reported by laboratories are relied 
upon by clinicians for the interpretation of their patients’ test 
results. It is therefore essential that laboratorians use all the 
tools at their disposal to ensure that the reference intervals 
that appear on reports are as accurate as possible. Modern 
laboratory databases are a valuable resource for the setting of 
reference intervals. Drawing on this resource is particularly 
helpful when practical constraints make performing a 
traditional reference interval study difficult or impossible. 

Indirect methods do need to be applied with caution to 
ensure accurate reference intervals are established. General 
considerations include whether the assay performance and 
characteristics of the study population were stable over the 
study period and whether data ‘pre-processing’ techniques 
should be used to clean up the data. It is also essential to 
consider whether the assumptions of the indirect method used 
have been met. Many methods assume that the distribution of 

values from healthy subjects is near-Gaussian. It is therefore 
necessary to consider whether this assumption is valid and, 
if not, whether using a mathematical transform will allow a 
Gaussian model to apply. 

This review will cover some of the more well-known indirect 
techniques as illustrations of the general approaches that 
may be taken. Appreciation of the methods used will help 
laboratorians critically appraise the published work of others 
and, moreover, provide tools to assist them setting reference 
intervals using on their own patient data. 

Direct Versus Indirect Reference Intervals
The traditional approach to establishing reference intervals 
involves recruiting healthy subjects into a study in which 
samples are collected for the sole purpose of defining the 
reference interval.  This approach is known as a ‘direct 
sampling’ technique.1 Direct reference interval studies may 
be further categorised on the basis of when exclusion criteria 
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are applied. A priori sampling is when the exclusion and 
partitioning criteria are applied before the selection of the 
reference individuals, while a posteriori sampling is when 
these criteria are applied after testing is performed. A priori 
sampling is the commonest approach. It may be used for 
well-established analytes for which the confounding factors 
and sources of variation are known. A posteriori sampling is 
necessary, however, for new tests where little is known about 
the sources of variation.2 

In contrast, indirect sampling techniques make use of results 
in a database established for purposes other than deriving a 
reference interval.2 Results from routine clinical pathology 
testing stored in laboratory databases are most often used. 
The indirect approach has significant practical advantages 
over traditional reference interval studies. Most notably, the 
indirect approach is considerably less time-consuming and 
costly to perform than a direct reference interval study. The 
costs of performing a direct reference interval study include 
staff time in identifying and consenting willing subjects as 
well as the costs associated with sample collection, handling, 
transport and analysis. In contrast, the only costs associated 
with performing an indirect reference interval study are 
associated with the staff time for data extraction and analysis. 
Furthermore, the direct approach quickly becomes impractical 
if multiple partitions are necessary because of the requirement 
for a minimum of 120 subjects in each partition.2 Hence if 
partitioning adults by decade of age from 20 to 80+ years, a 
minimum of 840 subjects is required. If partitioning by sex is 
additionally performed, then a minimum of 1680 subjects is 
necessary.

Indirect approaches may also be valuable when a significant 
proportion of the general population requires exclusion. For 
instance, to examine parathyroid hormone (PTH) reference 
intervals in subjects 75 years and older in Australia, it would 
be necessary to exclude 42% with chronic kidney disease3 and 
66% with vitamin D insufficiency or deficiency.4 Therefore, to 
obtain 120 subjects after these exclusion criteria are applied, 
one would need to recruit over 625 subjects into the study. 
Indeed, PTH provides an illustration of how an overly-narrow 
focus on using a direct approach may hamper progress in 
establishing accurate reference intervals. When investigating 
PTH reference intervals, not only is there a high rate of 
exclusion but, as levels increase independently with age, there 
is a desire to define reference intervals in multiple age partitions 
across the lifespan.5 In 2002, an International Workshop on 
Asymptomatic Hyperparathyroidism highlighted the need 
for further research into establishing accurate PTH reference 
intervals, which encouraged multiple groups to attempt direct 
reference interval studies.6-9 Subsequent workshops reviewed 
these studies and concluded that they were inadequate,10,11 

demonstrating the impracticality of enrolling adequate 
numbers of subjects into multiple age partitions for a rigorous 
direct PTH reference interval study. 

An additional advantage of reference intervals generated by 
an indirect approach is that they reflect routine laboratory 
operating conditions. In contrast, direct studies may be 
conducted under ideal pre-analytical and analytical conditions 
that are difficult, or impossible, to replicate in routine practice. 
Finally, there are also ethical advantages to the indirect 
approach, as participants are not subjected to venesection 
solely for a reference interval study and the approach avoids 
the dilemmas that occur in direct studies when apparently 
healthy subjects have extreme results. 

A recent publication from the International Federation 
of Clinical Chemistry (IFCC) Committee on Reference 
Intervals and Decision Limits (C-RIDL) gives more detail 
on the relative merits of direct and indirect approaches.1 This 
current review considers existing approaches for estimation 
of indirect reference intervals and extends on the C-RIDL 
publication by providing more details on the performance of 
the various approaches.

Datasets and Categorisation of Indirect Methods
Multiple methods for establishing reference intervals by the 
indirect approach have been published. The methods have 
not only been used as they were initially described, but also 
modified or used in combination. In the broadest terms, the 
methods may be categorised by the level at which the health-
related data is separated: at the level of the subject or the level 
of the result (or, more specifically, the distribution of results). 
The first category of methods identifies individuals who are 
presumed to be relatively healthy, for instance by selecting 
only subjects undergoing periodic health surveillance (Table 
1). The second category of methods is designed to be applied 
to datasets that contain values from both healthy subjects 
and those with disease; such datasets may be referred to as 
‘mixed’. These methods aim to separate out the distribution 
of values from healthy individuals from the mixed dataset, for 
example, by using statistical techniques to identify a central 
Gaussian distribution. Currently methods applied to mixed 
datasets are used more frequently than those identifying 
presumed healthy individuals.

Special Considerations for Indirect Reference Intervals 
Assay and Population Stability 
The accurate and stable performance of the assay used is an 
important consideration for all reference interval studies. 
However, this requires special attention for indirect reference 
interval studies because of the extended time-period over 
which the testing usually occurs. Similarly, it is important to 
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review whether the characteristics of the population tested, 
and the pre-analytical processes used, were consistent 
throughout the study period.

Analytical performance may be assessed by reviewing the 
results of internal quality control and external quality assurance 
testing over the study period. Review of the median patient 
result across time is another useful tool, for example monthly 
medians may be reviewed. This may allow identification of 
analytical shifts, changes in the characteristics of the patient 
population or variations in pre-analytical processes. They may 
additionally allow identification of seasonal influences on 
analyte concentration, as has been observed for bone turnover 
markers in European populations, for instance.12

Data Pre-Processing
When an indirect approach is used, the investigator may take 
steps to limit the number of subjects with disease included 
in a dataset. While this is not essential for methods designed 
for use on mixed datasets, many investigators using these 
techniques still choose to perform one or more pre-processing 
steps to help ‘clean up’ the data. 

The exclusion of extreme values is a common step taken. This 
may simply involve excluding values beyond an arbitrary 
limit, such as those more than 10 times the upper reference 
limit13 or involve a statistical test, such as that of Tukey, or 
others.14-16

Another data pre-processing step that may be used is the 
exclusion of data from particular referral sites where there is a 
high likelihood that the patients have significant disease, such 
as intensive care units and oncology departments.13,17 It may 
also be appropriate to exclude data from additional referral 
sites depending on the analyte of interest, for example lipid 
and renal clinics. Indeed, if it is possible, excluding data from 

all referral sites other than primary care will lower the risk 
of data from subjects with disease affecting the results of the 
study.

Authors also frequently exclude repeat results, so that each 
patient only contributes one result to the dataset.18,19 Some 
investigators have gone further and excluded all data from 
subjects who had more than one episode of testing for the 
analyte of interest during the study period.20 This approach 
assumes that subjects who have multiple episodes of testing 
are more likely to have disease. 

Modelling the Distribution of Values in Healthy Subjects 
Most of the indirect methods that are applied to mixed 
datasets assume that values from healthy populations fit a 
near-Gaussian distribution. Biochemical data never truly 
have a Gaussian distribution because the analytical standard 
deviation (SD) is not constant in the measurement interval. 
Oftentimes, however, measurands show gross deviation from 
this model with significant skewing. Several causes may be 
responsible for skewed distributions. Firstly, it may be that 
the distribution of values from truly healthy individuals is 
approximately Gaussian and that the skewing is due to the 
presence of subjects with disease in the dataset. Secondly, 
a skewed distribution may result from the overlapping of 
different subgroups, each with a Gaussian distribution but 
with different means, as may occur with different age-groups. 
Lastly, it may be that the distribution of values in healthy 
individuals is genuinely skewed. 

It is therefore vital to gather as much information as possible 
about the distribution of values in healthy populations prior 
to using an indirect method on a mixed dataset. Ideally, 
this would involve review of independent data from large 
published studies. In some circumstances, it may also be 
possible to identify a subset of individuals who are likely to 

A.	 Results from presumed healthy subjects extracted2

i.	 Blood donors
ii.	 Individuals undergoing periodic health screening
iii.	 Individuals undergoing lead screening
iv.	 Individuals undergoing minor surgical procedures
v.	 Individuals undergoing genetic screening

B.	 Results extracted unselectively and subjects with disease excluded from the dataset. Subjects with  
disease identified by:
i.	 Relevant diagnosis (as determined by expert opinion or machine learning)

•	 Clinical notes on request form
•	 Discharge diagnosis in hospital database
•	 Linkage of multiple databases

ii.	 Abnormality of associated laboratory result (as determined by expert opinion or statistical association)

Table 1. Indirect methods for establishing reference intervals that obtain a dataset from presumed healthy individuals.
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be healthy from among the extracted data, such as those being 
tested as part of periodic health screening and use these values 
to give insight into the expected distribution in health.13 The 
dataset extracted should also be examined for the presence of 
any subgroups that require partitioning. 

If it is determined that transforming the data to a Gaussian 
distribution is appropriate, a suitable transformation needs 
to be selected. Log transforms are commonly used. They are 
appropriate for positively (right) skewed data that fits the log-
normal model.21 However a power-normal, or ‘Box-Cox’, 
transformation is a more general approach that is superior for 
some analytes. This transform is favoured by the IFCC and 
Clinical and Laboratory Standards Institute (CLSI).1,2 The 
Box-Cox transformation is defined by the function:

where yλ is the transformed value, x is the original value, and 
λ is the transformation value.22 

Care needs to be exercised in ensuring that the transformation 
parameters used are suitable. In particular, one wants to avoid 
‘over-transforming’ the data such that values from subjects 
with disease are incorporated into a Gaussian distribution 

along with values from healthy subjects. Such a scenario may 
occur if the underlying distribution of values from healthy 
subjects is skewed, but the skewedness is increased by the 
presence of subjects with disease. This type of problem may 
be encountered for instance when examining transaminase 
reference intervals in populations where non-alcoholic fatty 
liver disease is highly prevalent.23 Again, use of independent 
information regarding the expected degree of skewedness in 
healthy populations is valuable in avoiding this pitfall. 

Some indirect approaches allow the values from healthy 
individuals to be modelled by non-Gaussian distributions. 
In particular, a modification of the Bhattacharya method 
(discussed later) utilises gamma distributions. Rather than 
being a single distribution, these are a family of distributions 
used to model positively skewed data. Each gamma 
distribution is described by two parameters, one determining 
the shape of the distribution (α) and the other having the effect 
of stretching or compressing the distribution (β)24 (Figure 1).

Methods that Obtain a Dataset from Presumed Healthy 
Individuals
The most straightforward indirect approach to defining 
reference intervals, from a theoretical standpoint, is to use 
results from presumed healthy subjects generated for reasons 
other than a reference interval study. Once such a dataset is 
obtained, simple non-parametric statistics can be applied to 

Figure 1. Standard gamma distributions. The shape and scale of the gamma distributions may be ‘parameterised’ in several ways. 
Here α – shape parameter and β – scale parameter. The standard gamma distributions are those where β = 1. 
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define the 2.5th and 97.5th percentiles as is done in the direct 
approach. The challenge of this strategy lies in the practicalities 
of obtaining a dataset from individuals that can be presumed 
to be relatively healthy. This may be approached in one of 
two general ways: either data from presumed healthy subjects 
is extracted, or unselected data is extracted but subjects with 
disease are subsequently identified and excluded. 

Results from Presumed Healthy Individuals Extracted 
The indirect method preferred by the CLSI is to extract results 
from presumed healthy subjects. To achieve this, the CLSI 
recommends using data from the populations listed in Table 
1 (Group A).2 The advantage of this approach is that the 
subjects used approximate a reference population. However, 
the approach has practical limitations in that the patient groups 
recommended are often difficult to identify in a laboratory 
database, the number of subjects may be small, and there may 
be a limited range of tests requested on these patients.

Most investigators do not have access to adequately-sized 
datasets from these populations. Nevertheless, many see the 
advantage of extracting data from as healthy a population as 
possible prior to using other indirect techniques. Examples 
include extracting data from the databases of private pathology 
providers primarily servicing general practitioners18 or, even 
more specifically, from patients attending practices focused 
on ‘wellness checks’.20 Another strategy focuses on the tests 
requested, limiting the data to only that from subjects in 
whom ‘basic’ biochemistry tests are requested.20 For instance, 
an indirect TSH reference interval study only used data from 
subjects in whom TSH was the sole thyroid function test 
requested, as opposed to requests which included FT4, FT3, or 
thyroid antibodies.18

Subjects with Disease Excluded from the Extracted Data
The second approach to obtaining a dataset from relatively 
healthy subjects is to extract an unselected population and 
then use techniques to identify and exclude subjects with 
disease from the dataset. Techniques have identified subjects 
with disease using known diagnoses or abnormalities in other 
laboratory results (Table 1, Group B). Currently this approach 
is not often used, but as database linkage and machine learning 
becomes more widespread, the approach may become more 
frequent.

In instances where this approach has been taken, investigators 
often use known diagnoses to exclude subjects. Approaches 
vary in how the diagnostic information is obtained and how 
decisions regarding which diagnoses to exclude are made. 
Diagnostic information may be most simply obtained from 
the pathology request form. Notes regarding the medications 
prescribed to the patient may also indicate particular 

diagnoses.18 However, the clinical information provided on 
pathology request forms is notoriously limited, if provided 
at all. Therefore, accessing databases that contain diagnostic 
information is generally required. For laboratories associated 
with a hospital, the hospital’s database may be used.25 Other 
databases may also be used, depending on the analyte being 
investigated and the nature of the local health service. For 
instance, in the NHS region of Tayside, Scotland, investigators 
examining TSH reference intervals were able to link the 
databases of the hospital network, community pharmacies 
and nuclear medicine service to the pathology database. This 
allowed thorough identification of patients known to have 
thyroid disorders, those using medications affecting thyroid 
function, as well as those who had received radioactive iodine 
treatment.26

Once a dataset containing known patient diagnoses is 
compiled, it needs to be decided which disorders to exclude 
from the dataset. This is often done by expert opinion. 
However, the approach could miss relevant disorders if a 
pathophysiological link to the analyte of interest is yet to 
be established. Moreover, the approach is generally labour-
intensive. For example, an indirect reference interval study 
of red cell parameters required a haematologist to review 
discharge diagnosis codes in a hospital database and compile 
a list of ‘several hundred’ of these that could possibly affect 
red cell parameters.25

An alternative approach to determining which conditions to 
exclude is to use machine learning. This was done by the 
Laboratory Mining for Individualized Threshold (LIMIT) 
study, which used an unsupervised machine learning 
algorithm to identify diagnostic codes that were significantly 
associated with outlier results for the analyte of interest.14 
The ‘learning’ component of the algorithm involved setting 
values for 4 parameters (one of which, for instance, governed 
the sensitivity to outlier detection). These values were set 
using data for serum sodium because of its well-established 
reference interval. The algorithm derived a reference interval 
for blood haemoglobin that was comparable with an interval 
derived by expert-based exclusion. It also derived a reference 
interval for serum potassium that was consistent with the 
harmonised reference interval. 

Subjects with disease may alternatively be identified on the 
basis of abnormalities of other laboratory tests. Again, expert 
opinion may be used to decide which tests are relevant. 
This approach will rely on known physiology and well-
established relationships between analytes. For instance, an 
investigation into PTH reference intervals which excluded 
subjects with abnormal albumin-adjusted serum calcium, 
estimated glomerular filtration rate below 60 mL/min/1.73m2 
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and 25-hydroxyvitamin D less than 75 nmol/L found that 
the observed 2.5th and 97.5th percentiles for the entire 
cohort (1.4–12.3 pmol/L), matched the reference interval 
derived using the more sophisticated statistical approach of 
Bhattacharya analysis (1.8–12.2 pmol/L).27 Rather than use 
expert opinion, some investigators have instead looked for 
statistical associations between test results. For instance, 
the REALAB collaboration used a multivariate algorithm 
to identify correlations between results of numerous tests.20 
All subjects who had an abnormal result for any test which 
had shown a correlation with the analyte of interest were then 
excluded prior to establishing the reference interval. 

An intriguing report has suggested that the time interval 
between repeat tests provides an index of how abnormal 
clinicians consider the initial result. Specifically, it was 
observed that the time interval between a result being reported 
and the clinician requesting a repeat test decreased as the 
initial result varied away from the midpoint of the reference 
interval, with no threshold effect.28 An interesting approach 
for future development would be statistically evaluating time 
interval data on repeat testing to define reference intervals 
using this parameter alone.

Techniques that are Applied to a Mixed Dataset
A range of techniques have been described that are designed 
to identify the distribution of health-related values from 
amongst a mixed dataset. These techniques require that most 
of the values from subjects with disease do not lie too close to 
the mean of results from healthy subjects.29 Furthermore, the 
nature of the distribution of values from healthy subjects needs 
to be understood. Almost all techniques assume that the results 
from healthy subjects follow a near-Gaussian distribution. 
If an analyte does not show a near-Gaussian distribution, a 
transform can be applied to the data. By assuming a near-

Gaussian distribution, these techniques reduce the problem 
of finding a reference interval to a problem of finding the 
mean and SD of values from healthy subjects. Once these 
parameters are determined, the calculation of the reference 
interval is trivial: mean ± 1.96 x SD.

Hoffmann Method
The Hoffmann method, described in 1963, is a graphical 
method that utilises special scaling of the y-axis of a 
cumulative frequency plot to identify a central Gaussian 
component in a dataset.30 For Gaussian distributions, the 
cumulative frequency will have a sigmoidal shape if a linear 
scale is used for the x- and y-axes (Figure 2A). Instead 
Hoffmann’s approach is to plot the cumulative frequency on 
‘normal probability paper’, which has a non-linear scale for 
the y-axis that is designed so a plot of cumulative frequency 
of a Gaussian distribution will give a straight line (Figure 
2B). In Hoffmann’s method, when the Gaussian component 
is visualised, a straight line is drawn through this part of 
the curve by eye with greatest weight given to fitting points 
around the 50% point on the graph. The line is extrapolated 
to the points on the graph where y = 2.5% and y = 97.5% and 
the corresponding x-values at these points represent the lower 
and upper reference limits (Figure 3). 

A number of variants of the Hoffmann method have been 
described. Neumann, for instance, proposed an iterative 
truncation variation, which he described as ‘dissecting’ out 
the healthy population.31 

It is important for the laboratorian to be aware that a number of 
recent publications have used a flawed variant of Hoffmann’s 
method that uses a linear scale for the y-axis rather than a 
normal probability plot.16,32-34 This approach undermines 
the theoretical basis of the method and leads to inaccurate 

Figure 2. Graphical representations of a cumulative Gaussian distribution. The cumulative percentage of observations (y-axis) 
of a dataset is graphed as a function of the value (x-axis). (A) Cumulative frequency plot: Data from a Gaussian distribution is 
plotted with both axes having a standard linear scale. The resulting graph is sigmoidal-shaped. (B) Normal probability plot: The 
y-axis has a non-linear scale designed so that the cumulative frequency of Gaussian data appears as a straight line. 
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reference interval estimates, with the interval generally being 
overly narrow.34-36

Bhattacharya Analysis
Bhattacharya’s method is a graphical method that involves 
mathematically straightening the Gaussian distribution prior 
to plotting the data. Again, the Gaussian component of the 
mixed population is visualised on the graph as a straight line. 
The full derivation of the Bhattacharya approach is provided 
elsewhere.37-39 However, an overview of the derivation 
provides insight into the apparently convoluted mathematics 
used. The Gaussian frequency distribution is defined by the 
function:

where μ – distribution mean and σ – distribution standard 
deviation. 

To ‘straighten’ this function, it is necessary to convert it to 
a function in terms of x. The first step, then, is to take the 
natural logarithm of the function. The resulting function then 
varies in terms of x2. Differentiating this function will give an 
expression in terms of x. For discrete data, differentiation can 
be approached by the ‘finite difference approximation’: data 
is categorised into bins of size h and the frequency of one bin 
(x) is subtracted from the next bin (x + h).

The Bhattacharya plot, which we refer to as the Bhattagram, 
graphs loge(x + h) - loge(x) on the y-axis versus the mid-point 
of the bin (x) on the x-axis. Consequently, points will appear 
in a straight line where the distribution is Gaussian (Figure 

4). The slope and intercept of the line of best fit of these points 
can be used to determine the mean and SD of the Gaussian 
component of the distribution. Specifically:

Bhattacharya’s original method involved establishing a line 
of best fit by eye using a piece of translucent paper with a 
line drawn on it.37 Nowadays, spreadsheets40 and computer 
programs41 are available online, which can produce a 
Bhattagram and use linear regression to determine a line of 
best fit for the segment that the operator visually identifies as 
the straight-line component. 

Several modifications to the basic Bhattacharya approach 
have been developed to address some of the potential pitfalls 
of the technique. Hemel suggested plotting the residuals of the 
linear regression to ensure that they are randomly distributed 
around zero. If they are not, it suggests that the distribution 
of the analyte is not Gaussian or has been distorted by a sub-
population.39 Others have suggested the rule of thumb that 
the data should only be analysed for reference intervals, if 
the linear part of the Bhattagram represents at least 40% of 
the total population, to ensure that the distributions of sub-
populations are not too close.38

To limit the effect of random statistical variations in the 
frequency distributions, it is recommended that at least 1500 
data points are used.38 The influence of random variation 
is likely to be larger for the bins with lower frequency. 

Figure 3. Illustration of Hoffmann’s method. A hypothetical mixed dataset is plotted in two ways. (A) Frequency plot: The 
dataset is seen to follow a Gaussian distribution with distortion in the tails. (B) Normal probability plot: In Hoffmann’s method a 
line of best fit of the central Gaussian component is drawn. The lower reference limit (LRL) and the upper reference limit (URL) 
are estimated from the x-values corresponding to y = 2.5% and y = 97.5%, respectively, along this line of best fit. This is the 
basis of Hoffmann’s original method.
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Bhattacharya suggested that when determining the line of best 
fit by eye, that the operator ensure the fit is best for the points 
on the graph where the frequency is high. Hemel proposed 
the rule of thumb that bins with frequency less than one-tenth 
of the mode are not included in the analysis.39 Naus proposed 
the use of weighting factors to reduce the influence of the low 
frequency bins on the linear regression.42 

A further modification that has been proposed for Bhattacharya 
analysis is using gamma distributions to model the distribution 
of values from healthy subjects for analytes with a positive 
skew.42 Software, freely available online, for Bhattacharya 
analysis includes the ability to model the healthy population 
with gamma distributions.41 

There are a number of elements in these graphical techniques 
which require the subjective input of the operator. The 
selection of an appropriate bin size is a significant decision. If 
it is too small the random variation in the frequency of each bin 
will increase, however if the bin size is too large there is a loss 
of resolution in the plot and, furthermore, the finite difference 
approximation to the differential in the Bhattacharya method 
becomes inaccurate. Selecting the best bin location, that is 
adjusting the position of all bins of the same fixed size slightly 
from side to side, may also be done to achieve the optimal fit. 

The selection of the points on the graph that represent the 

Gaussian component of the distribution is also a subjective 
determination. The central points of the Hoffmann plot or 
Bhattagram are generally clear. However, it is deciding 
whether to include the points towards the margins that is more 
difficult. This decision may be supported by software which 
allows the operator to inspect the Gaussian plot as well as the 
residuals from the line of best fit. Some authors have used 
algorithms to determine the linear portion automatically.43 
However it is unclear whether this is an advance over 
operator-selected fit.

Pryce Method
The method of Pryce analyses the central component of a 
mixed distribution. It assumes that the central component of 
the distribution represents values from healthy individuals and 
follows a Gaussian distribution. It is designed to determine 
the mean and SD of this component using simple statistics, 
as it was developed before computers were routinely used for 
calculations.44

The approach requires knowledge of whether results from 
subjects with disease occur on just one end of the mixed 
distribution or on both ends. For instance, AST results from 
subjects with disease would be expected to occur only on 
the high side of the mixed distribution, while sodium results 
from subjects with disease will appear on either end of the 
distribution. 

Figure 4. Bhattagram of dataset 3(A). The dataset shown in Figure 3(A) is graphed on a Bhattacharya plot, or ‘Bhattagram’. 
Loge(x + h) - loge(x) is plotted on the y-axis, where h is the data bin width, against the midpoint of the bin on the x-axis. The 
central Gaussian component of the dataset is visualised as linearly-related points with a negative slope. The mean and standard 
deviation of the Gaussian component of the dataset can be calculated from the slope and y-intercept of the line of best fit of these 
data points. 
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When values from subjects with disease occur on both ends 
of the distribution, the method assumes that the presence of 
these results does not affect the distribution of values from 
healthy subjects on 1 SD either side of the mean (Figure 5). 
The mean of the healthy population is therefore estimated 
from the mean of the mixed distribution and the SD from one-
half of the distance between the 16th and 84th percentiles. In 
the scenario where results from subjects occur only on one 
side of the distribution, the mode (highest frequency value) is 
taken as the estimate of the mean value for healthy subjects 
and the SD of values from healthy subjects is estimated by 
determining the absolute difference between either the 16th or 
84th percentile and the mode. The 16th percentile is used if 
results from subjects with disease occur on the high side of 
the distribution (Figure 6). Conversely, the 84th percentile is 
used if results from subjects with disease occur on the low 
side of the distribution. A similar approach for the scenario of 
abnormal results on one side of the distribution was described 
by Becktel.29

Recent Developments
Recently, there has been interest in leveraging modern 

computational power for deriving indirect reference intervals 
using maximum likelihood estimation.36,45 This approach is 
exemplified by that of Arzideh et al.,13 who have made software 
freely available to laboratorians on the website of the German 
Society for Clinical Chemistry and Laboratory Medicine.46 
The core component of the approach is a truncated maximum 
likelihood estimation of the parameters (mean, variance, λ) of 
a power normal distribution. 

As a preparative step, the technique creates a density function 
for the data. This has the advantage over a histogram of 
smoothing the data into a continuous function. The technique 
used to create this continuous density function is known as 
kernel density estimation. In this technique, each observed 
data point is replaced by a small Gaussian function centred 
on the data point. This function is known as the ‘kernel’. The 
kernel functions for all data points are then summed to give 
an overall smoothed continuous probability density function 
for the population. 

Once the preparative step of creating the density function 
is complete, the central part of the distribution, assumed to 

Figure 5. Principles of Pryce’s method: abnormal values on both ends of the distribution. When values from subjects with 
disease occur on both ends of the distribution Pryce assumes the values from subjects with disease do not significantly affect the 
mean value from healthy subjects. The standard deviation (SD) is estimated by assessing 34% of the population on either side of 
the mean. The solid lines represent the Gaussian distribution of values from healthy individuals. The dashed lines represent the 
distortion of this distribution by values from subjects with disease.
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represent the distribution in healthy individuals is analysed. 
Specifically, the Box-Cox transformation value (λ), mean and 
variance are determined by ‘maximum likelihood estimation’, 
which in this context involves the software using an iterative 
approach to find the parameters most likely to have given the 
observed results. The limits of the central component of the 
distribution are defined by an optimisation process that uses 
the Kolmogorov statistic. 

An interesting additional aspect of this approach is the ability 
to model the distribution of values from subjects with disease. 
This is achieved by subtracting the density function of the 
healthy population from the mixed population. This may be 
useful because the point of intersection of the density function 
of subjects with disease with the density function of healthy 
subjects theoretically provides the decision limit with the 
‘maximum diagnostic efficiency’ (MDE) in discriminating 
health and disease. Calculation of this point requires a 
minimum prevalence of subjects with disease in the dataset. 
The prevalence required depends on the distance between the 
modes of the healthy subjects and subjects with disease. If 
the prevalence becomes too low, the calculated MDE limit 
can become implausibly high. The authors therefore set the 
criterion that diagnostic sensitivity of the MDE limit must be 

greater than 50% for it to be valid. Estimation of MDE limits 
at the upper end of the distribution has been done for some 
common chemistry analytes: AST, ALT, alkaline phosphatase, 
GGT, LDH, lipase, amylase and CK-MB.13 For most analytes 
the MDE limit was estimated to be slightly below the 97.5th 
percentile of the healthy population. Whether the MDE limit 
might prove clinically useful is an interesting subject for 
further investigation. 

Open source software packages in the R programming 
language are also available that apply the maximum likelihood 
approach to fitting Gaussian or gamma distributions to a 
mixed dataset.36,47 Their use requires familiarity with the R 
programming languags and, when applied appropriately, are 
powerful tools for deriving indirect reference intervals.36

Implications for Laboratorians: The Present and the 
Future
The Present
Currently, the most useful indirect techniques for laboratorians 
are those that may be applied to mixed datasets. These allow 
laboratorians to use stored patient results from routine testing. 
There are no data that clearly point to the superiority of one of 
these techniques over others. Both the method of Hoffmann 

Figure 6. Principles of Pryce’s method: abnormal values on one end of the distribution. When values from subjects with disease 
occur only on one end of the distribution, Pryce uses the mode (highest frequency value) to estimate the mean of values from 
healthy subjects. The standard deviation (SD) is estimated by assessing 34% of the population on the side of the mode away 
from the side of the distribution with abnormal values. The solid lines represent the Gaussian distribution of values from healthy 
individuals. The dashed lines represent the distortion of this distribution by values from subjects with disease.
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and Bhattacharya are well-established and, in our experience, 
give similar results. The introduction of techniques based on 
maximum likelihood estimates appears to be a significant 
advance in the field. A data simulation experiment showed 
maximum likelihood estimation to outperform the methods 
of Hoffmann and Bhattacharya.36 Nevertheless, there is less 
clinical laboratory experience with this approach and hence 
some caution in its use may be appropriate. 

Regardless of the method used, once a laboratorian derives 
indirect reference intervals, it is important that they are 
subjected to critical scrutiny. Ideally, this will be done in 
several different ways. Comparison of the results to published 
reference intervals using both direct, if available, and indirect 
methods, should be done and any known method-specific 
differences between the assays used considered. Results may 
also be compared to the reference intervals that are used by 
different laboratories, as well as those used historically at the 
laboratory at which the data were generated.

Furthermore, if partitioning is done, the reference intervals for 
the different groups may be compared to known physiology. 
For example, if it is known that values for the analyte in 
question increase with age in healthy individuals, then one 
would evaluate the indirect reference intervals derived to 
determine if this effect is seen. The percentage of patient 
results falling outside the derived reference interval should be 
reviewed, preferably on an independent dataset. For example, 
the authors of a paper using a flawed Hoffmann approach 
identified an issue with the reference interval they derived 
(using a standard value for the allowable deviation from the 
linear portion of the Hoffmann plot), by determining that 48% 
of patient results in an independent dataset would be outside 
the reference interval.34

A laboratorian may also choose to use more than one indirect 
technique to determine the extent of the between-method 
variation in indirect reference intervals. Additionally, for 
techniques in which there are subjective elements, such as 
those of Hoffmann and Bhattacharya, there may be value in 
varying the subjective elements within plausible limits to help 
gain some insight into the degree of within-method variation 
that may exist.

In summary, the most robust approach for the laboratorian 
to take when utilising indirect techniques for establishing 
reference intervals is to consider the results in the context of 
all the information at their disposal. In this manner, a decision 
to implement a particular reference interval is based on the 
convergence of a number of lines of evidence rather than the 
outcome of a single indirect reference interval study that has 
not been critically scrutinised.

The Future
The field of study relating to indirect reference intervals 
has had a slow evolution since the description of methods 
by the likes of Hoffmann and Pryce in the early 1960s. 
However, we expect that the revolution in data analytics 
that has occurred in recent years outside the laboratory will 
cross over into the medical laboratory in the coming years. 
A collaboration has already been established between Beth 
Israel Deaconess Medical Center and Amazon’s data analytics 
division48 and, although it has not yet addressed issues in the 
clinical laboratory, it illustrates a mechanism by which future 
advances in the field may be rapidly realised.

In the coming years, it is likely that maximum likelihood 
approaches will undergo modification, as was seen for 
Bhattacharya’s method, as clinical laboratorians gain 
experience with the technique and come to better understand 
its limitations. However, the largest advances are likely to 
come from linkage of databases across the healthcare system. 
Linkage of laboratory results to known patient diagnoses 
and clinical outcomes may not only allow the derivation 
of reference intervals for particular patient populations but 
also allow the establishment of decision limits for particular 
clinical questions. Certainly, as technology and techniques 
develop, it is likely that indirect approaches to establishing 
reference intervals will become increasingly valuable to 
laboratorians.

Conclusion
The use of accurate reference intervals is an important 
responsibility borne by laboratorians. The traditional focus 
when establishing reference intervals has been on direct 
reference interval studies. However, modern computing 
now allows the storage of vast datasets of patient results 
and the ability to rapidly analyse this data using advanced 
algorithms. Consequently, the indirect approach to deriving 
reference intervals is becoming increasingly valuable. The 
approach is not only inexpensive and quick to perform, but 
it allows granular assessment of population sub-groups and 
partitioning of these groups if necessary. Caution does need 
to be exercised when using the indirect approach. However, a 
thorough understanding of the principles involved in deriving 
indirect reference intervals allows the laboratorian to harness 
the power of the data stored in their laboratory database. 

Competing Interests: None declared.

References
1.	 Jones GR, Haeckel R, Loh TP, Sikaris K, Streichert T, 

Katayev A, et al; IFCC Committee on Reference Intervals 
and Decision Limits. Indirect methods for reference 
interval determination - review and recommendations. 



110 | Clin Biochem Rev 40 (2) 2019

Indirect Reference Intervals

Clin Chem Lab Med 2018;57:20-9.
2.	 Clinical and Laboratory Standards Institute. Defining, 

Establishing, and Verifying Reference Intervals in 
the Clinical Laboratory; Approved Guideline – Third 
Edition. CLSI document EP28-A3c. Wayne, PA, USA: 
CLSI; 2010.

3.	 Australian Bureau of Statistics. Australian Health 
Survey: Biomedical Results for Chronic Diseases, 
2011-12. https://www.abs.gov.au/ausstats/abs@.nsf/
Lookup/4364.0.55.005Chapter1002011-12  (Accessed 
17 April 2019).

4.	 Daly RM, Gagnon C, Lu ZX, Magliano DJ, Dunstan 
DW, Sikaris KA, et al. Prevalence of vitamin D 
deficiency and its determinants in Australian adults aged 
25 years and older: a national, population-based study. 
Clin Endocrinol (Oxf) 2012;77:26-35.

5.	 Paik JM, Farwell WR, Taylor EN. Demographic, 
dietary, and serum factors and parathyroid hormone in 
the National Health and Nutrition Examination Survey. 
Osteoporos Int 2012;23:1727-36.

6.	 Souberbielle JC, Cormier C, Kindermans C, Gao P, 
Cantor T, Forette F, et al. Vitamin D status and redefining 
serum parathyroid hormone reference range in the 
elderly. J Clin Endocrinol Metab 2001;86:3086-90.

7.	 Aloia JF, Feuerman M, Yeh JK. Reference range for 
serum parathyroid hormone. Endocr Pract 2006;12:137-
44.

8.	 Rejnmark L, Vestergaard P, Heickendorff L, Mosekilde 
L. Determinants of plasma PTH and their implication 
for defining a reference interval. Clin Endocrinol (Oxf) 
2011;74:37-43.

9.	 Touvier M, Deschasaux M, Montourcy M, Sutton 
A, Charnaux N, Kesse-Guyot E, et al. Interpretation 
of plasma PTH concentrations according to 25OHD 
status, gender, age, weight status, and calcium intake: 
importance of the reference values. J Clin Endocrinol 
Metab 2014;99:1196-203.

10.	 Eastell R, Arnold A, Brandi ML, Brown EM, D’Amour 
P, Hanley DA, et al. Diagnosis of asymptomatic 
primary hyperparathyroidism: proceedings of the 
third international workshop. J Clin Endocrinol Metab 
2009;94:340-50.

11.	 Bilezikian JP, Brandi ML, Eastell R, Silverberg 
SJ, Udelsman R, Marcocci C, et al. Guidelines 
for the management of asymptomatic primary 
hyperparathyroidism: summary statement from the 
Fourth International Workshop. J Clin Endocrinol 
Metab 2014;99:3561-9.

12.	 Woitge HW, Scheidt-Nave C, Kissling C, Leidig-
Bruckner G, Meyer K, Grauer A, et al. Seasonal 
variation of biochemical indexes of bone turnover: 
results of a population-based study. J Clin Endocrinol 

Metab 1998;83:68-75.
13.	 Arzideh F, Wosniok W, Gurr E, Hinsch W, Schumann 

G, Weinstock N, et al. A plea for intra-laboratory 
reference limits. Part 2. A bimodal retrospective 
concept for determining reference limits from intra-
laboratory databases demonstrated by catalytic activity 
concentrations of enzymes. Clin Chem Lab Med 
2007;45:1043-57.

14.	 Poole S, Schroeder LF, Shah N. An unsupervised 
learning method to identify reference intervals from a 
clinical database. J Biomed Inform 2016;59:276-84.

15.	 Clerico A, Trenti T, Aloe R, Dittadi R, Rizzardi S, 
Migliardi M, et al; Italian Section of the European 
Ligand Assay Society (ELAS). A multicenter study 
for the evaluation of the reference interval for TSH in 
Italy (ELAS TSH Italian Study). Clin Chem Lab Med 
2018;57:259-67.

16.	 Katayev A, Fleming JK, Luo D, Fisher AH, Sharp TM. 
Reference intervals data mining: no longer a probability 
paper method. Am J Clin Pathol 2015;143:134-42.

17.	 Ilcol YO, Aslan D. Use of total patient data for indirect 
estimation of reference intervals for 40 clinical chemical 
analytes in Turkey. Clin Chem Lab Med 2006;44:867-
76.

18.	 Kahapola-Arachchige KM, Hadlow N, Wardrop R, Lim 
EM, Walsh JP. Age-specific TSH reference ranges have 
minimal impact on the diagnosis of thyroid dysfunction. 
Clin Endocrinol (Oxf) 2012;77:773-9.

19.	 Farrell CL, Nguyen L, Carter AC. Data mining for 
age-related TSH reference intervals in adulthood. Clin 
Chem Lab Med 2017;55:e213-5.

20.	 Grossi E, Colombo R, Cavuto S, Franzini C. The 
REALAB project: a new method for the formulation 
of reference intervals based on current data. Clin Chem 
2005;51:1232-40.

21.	 Feng C, Wang H, Lu N, Chen T, He H, Lu Y, et al. Log-
transformation and its implications for data analysis. 
Shanghai Arch Psychiatry 2014;26:105-9.

22.	 Box G, Cox D. An analysis of transformations. J R Stat 
Soc Series B Stat Methodol 1964;26:211-52.

23.	 Ichihara K, Ozarda Y, Barth JH, Klee G, Shimizu Y, Xia 
L, et al; Committee on Reference Intervals and Decision 
Limits, International Federation of Clinical Chemistry 
and Laboratory Medicine and Science Committee, Asia-
Pacific Federation for Clinical Biochemistry. A global 
multicenter study on reference values: 2. Exploration 
of sources of variation across the countries. Clin Chim 
Acta 2017;467:83-97.

24.	 NIST/SEMATECH. e-Handbook of Statistical Methods: 
Gamma Distributions. https://www.itl.nist.gov/div898/
handbook/eda/section3/eda366b.htm. (Accessed 10 
December 2018).



Clin Biochem Rev 40 (2) 2019 | 111

Farrell C-J L & Nguyen L

25.	 Kouri T, Kairisto V, Virtanen A, Uusipaikka E, Rajamäki 
A, Finneman H, et al. Reference intervals developed 
from data for hospitalized patients: computerized 
method based on combination of laboratory and 
diagnostic data. Clin Chem 1994;40:2209-1.

26.	 Vadiveloo T, Donnan PT, Murphy MJ, Leese GP. Age- 
and gender-specific TSH reference intervals in people 
with no obvious thyroid disease in Tayside, Scotland: 
the Thyroid Epidemiology, Audit, and Research Study 
(TEARS). J Clin Endocrinol Metab 2013;98:1147-53.

27.	 Farrell CL, Nguyen L, Carter AC. Parathyroid hormone: 
Data mining for age-related reference intervals in adults. 
Clin Endocrinol (Oxf) 2018;88:311-7.

28.	 Weber GM, Kohane IS. Extracting physician group 
intelligence from electronic health records to support 
evidence based medicine. PLoS One 2013;8:e64933.

29.	 29. Becktel JM. Simplified estimation of normal 
ranges from routine laboratory data. Clin Chim Acta 
1970;28:119-25.

30.	 Hoffmann RG. Statistics in the practice of medicine. 
JAMA 1963;185:864-73.

31.	 Neumann GJ. The determination of normal ranges from 
routine laboratory data. Clin Chem 1968;14:979-88.

32.	 Grecu DS, Paulescu E. Quality in post-analytical phase: 
indirect reference intervals for erythrocyte parameters 
of neonates. Clin Biochem 2013;46:617-21.

33.	 Soldin OP, Sharma H, Husted L, Soldin SJ. 
Pediatric reference intervals for aldosterone, 
17α-hydroxyprogesterone, dehydroepiandrosterone, 
testosterone and 25-hydroxy vitamin D3 using tandem 
mass spectrometry. Clin Biochem 2009;42:823-7.

34.	 Zhang Y, Ma W, Wang G, Lv Y, Peng Y, Peng X. 
Limitations of the Hoffmann method for establishing 
reference intervals using clinical laboratory data. Clin 
Biochem 2019;63:79-84.

35.	 Jones G, Horowitz G, Katayev A, Fleming JK, Luo 
D, Fisher AH, et al. Reference intervals data mining: 
getting the right paper. Am J Clin Pathol 2015;144:526-
7.

36.	 Holmes DT, Buhr KA. Widespread incorrect 
implementation of the Hoffmann method, the correct 
approach, and modern alternatives. Am J Clin Pathol 
2019;151:328-36.

37.	 Bhattacharya CG. A simple method of resolution of 
a distribution into gaussian components. Biometrics 
1967;23:115-35.

38.	 Baadenhuijsen H, Smit JC. Indirect estimation of 
clinical chemical reference intervals from total hospital 
patient data: application of a modified Bhattacharya 
procedure. J Clin Chem Clin Biochem 1985;23:829-39.

39.	 Hemel JB, Hindriks FR, van der Slik W. Critical 
discussion on a method for derivation of reference 

limits in clinical chemistry from a patient population. J 
Automat Chem 1985;7:20-30.

40.	 Jones GR. Bhattacharya spreadsheet. http://www.
sydpath.stvincents.com.au/index.htm (Accessed 11 
April 2019).

41.	 Chesher D. Bellview: A tool to perform Bhattacharya 
analysis on laboratory data. (Accessed 4 November 
2017).

42.	 Naus A. De berekening van referentiwwaarden 
in klinische chemie uit analseresultaten van ee 
patientenpopulatie (Thesis). 1982.

43.	 Oosterhuis WP, Modderman TA, Pronk C. Reference 
values: Bhattacharya or the method proposed by the 
IFCC? Ann Clin Biochem 1990;27:359-65.

44.	 Pryce JD. Level of haemoglobin in whole blood and 
red blood-cells, and proposed convention for defining 
normality. Lancet 1960;2:333-6.

45.	 Concordet D, Geffré A, Braun JP, Trumel C. A new 
approach for the determination of reference intervals 
from hospital-based data. Clin Chim Acta 2009;405:43-
8.

46.	 German Society of Clinical Chemistry and Laboratory 
Medicine. Decision limits/guideline values. https://
www.dgkl .de/verbandsarbei t /arbei tsgruppen/
entscheidungsgrenzen-richtwerte/ (Accessed 18 
December 2018).

47.	 Benaglia T, Chauveau D, Hunter DR, Young DS. 
mixtools: An R Package for Analyzing Mixture Models. 
J Stat Softw 2009;32:1-29.

48.	 Wood M. Improving patient care with machine learning 
at Beth Israel Deaconess Medical Center. https://aws.
amazon.com/blogs/machine-learning/improving-
patient-care-with-machine-learning-at-beth-israel-
deaconess-medical-center/ (Accessed 11 April 2019).


